
High Performance Data Structures:
Theory and Practice

Roman Elizarov
Devexperts, 2006

High performance?

NO!!! We’ll talk about different “High Performance”.
One that aimed at avoiding all those racks and racks….

e1

Slide 2

e1 elizarov; 17.11.2006

Programs = Algorithms + Data Structures

This classical quote (N. Wirth) sounds funny
nowadays.

You rarely hear algorithms and data structures
discussed in modern business-oriented
software development.
Why?

Classical algorithms analysis

As taught in classical books:
Knuth, The Art of Programming
Wirth, Algorithms & Data Structures
Aho & Ullman, Data Structures & Algorithms
Cormen et al, Introduction to Algorithms

Algorithms and data structures are analyzed
based on their asymptotical performance for
N elements or operations – O(N), O(N log N),
O(N2), O(N3), etc.

“Effective” algorithms are of the most interest

Performance matters…

… for large N values

N N log N N2 N3

10 20 100 1K

100 300 10K 1M

1K 4K 1M 1G

10K 50K 100M 1T

Performance… anybody?

Most business systems have 3-tier
architectures: data, logic, and presentation.

Data layer is usually implemented in DBMS.
That’s where a bulk of data is located (N >
10K).
Logic layer works only with small query results
from database (N ~ 100).
Presentation layer similarly processes small
human-consumable portions of data (N ~
100).

Does it matter for small Ns?

Modern entry-level systems perform “just” ~1Gops/s
How many ops/s we could make (in red)?

N N log N N2 N3

10, 100M 20, 50M 100, 10M 1K, 1M

100, 10M 300, 3M 10K, 100K 1M, 1K

1K, 1M 4K, 250K 1M, 1K 1G, 1

10K, 100K 50K, 20K 100M, 10 1T, 0.001

Business … as usual

Usually only DBMS vendor’s developers are
facing large Ns (work with considerable
amounts of data and operations on them).
Most application developer never face large
sets of data in their entire career.

They don’t have to!
What happens when those developers
suddenly face it?

Disaster.

Performance-critical areas

Processing of large databases (N > 10K)
Mostly solved problem by DBMS vendors, but
may require special skills and understanding.

Real-time processing of events:
Telemetry
Telecommunications
Real-time financial transactions
Real-time monitoring
Your examples here

Not solved?

DBMSs on a regular hardware perform
around ~1-10K transactions per second at
most.

Clearly not enough if you have > 100K quotes
per second from all exchanges around the
world to process.

A lot of hand-coding is required when you try
to receive, process, store, and/or forward
huge amounts of data in real-time.

How would you even parse > 1Mbytes/s of
incoming network traffic?

But all algos & DSs are there to use!

All the modern languages (C++, Java, C#)
have standard libraries with:

Array & linked lists, deques, stacks;
Priority queues;
Tree (sorted) maps & sets;
Hash maps & sets;
Sorting algorithms.

All with the best theoretical performance
What else a sophisticated high performance
software might ever need?

Theory

Practice vs Theory

In practice, if performance matters you’d like
to have every conceivable bit of it

You would not write in assembler (huh?) …
… but for some applications even this is not
the last practical resort (out of topic, though)

In theory it is just an asymptotical
performance that matters.

How come it is not enough?

Reality strikes back

Modern hardware has exceedingly complex
design that affects software performance on
many levels.

For business systems it usually boils down to
memory subsystem.
Now, scientific software might also heavily
depend on FP & command scheduling details
(but that is out of topic for this discussion).

Deep understanding of the modern hardware
is required to get most of its potential.

A very simple demo
// Constants
int KB = 1024;
int MB = KB * KB;
int SIZE = 256 * MB;

// Data (randomly filled)
int[] data = new int[SIZE / 4];
int[] ofs = new int[SIZE / 4];
int res; // temporary var

// Sequential read of data
for (int i = 0; i < data.length; i++)

res += data[i];

// Random read of data, sequential read of ofs
for (int i = 0; i < ofs.length; i++)

res += data[ofs[i]];

… and results

It means that addition of random read in the second
test slowed it down by 2610 ms.

Random read is ~ 18 times slower!

Sequential read of data 140 ms
Random read of data, sequential ofs 2750 ms

* On 2GHz Intel Pentium M Processor

Modern computing

Modern memory has very high latency
compared to system clock speed.

But it has high throughput (if you can use it).
Latency problems are partially addressed by
cache hierarchy.

But it will not help you with really large data.
Why is it designed that way?

Modern computing cont’d

Modern computing hardware is mostly optimized for
multimedia & streaming data processing.

Video, Audio, Pictures.
Encoding/decoding.

All subsystems are oriented for those goals:
Special SIMD (vector) instruction sets;
Caches that read a range of memory at once;
Prefetch of next memory locations.

But few business (server) applications really care
about high-speed video encoding!

A problem (as example)

What if we have > 100K event/s from 10-
100K sources that we need to sort out by
source and process separately?

Quotes, telemetry, etc.
It may all come via a single network stream.

We would need to randomly use a large
portion of memory to keep all information
related to a single source.

We’ll need a dictionary to find our source-
related information.

Hash tables

Hash tables are usually the prime choice:
O(1) amortized update/access time.
They are available in all standard libraries.
But they are coded up to classical recipes.

Knuth names several ways to resolve
collisions in hash functions:

Chaining (the most popular in practice)
Open addressing (linear probing, quadratic
probing, double hashing)

Chaining

Even a successful hash
lookup requires access
to several memory
locations.

Even when chains are
of the shortest possible
length (one)!

Linear addressing

Cells are implicitly
linked (next or previous
one is checked on
collision).

Typical cache would
load all information in a
single request
… even when a chain
of liked cells is long.

Let’s check it out
// good things never work without magic
int MAGIC = 0xC96B5A35;

// data structure elements
Object[] a; // hash-table itself – 2*i – keys, 2*i+1 – values
int shift; // shift for hash-code

// Lookup algorithm. Object key is on input
int i = ((key.hashCode() * MAGIC) >>> shift) << 1;
Object k;
while (!key.equals(k = a[i])) {

if (k == null)
return null;

if (i == 0)
i = a.length;

i -= 2;
}
return a[i + 1];

… and results

Linear addressing is almost x2 as fast, even though:
We work with object keys, so some random memory
access is required anyway (to follow a link to the key
object for equality test).

Chaining (code from a library) 1407 ms
Linear addressing (our code) 750 ms

* On 2GHz Intel Pentium M Processor
** Key hashes are from 0 to 3999999, values random

Conclusions

Number of memory “blocks” accessed is what
actually matters a lot.

Typically, the fewer memory your data
structure consumes the faster it is.

In classical analysis of algorithms there is a
class of algorithms for external memory that
are analyzed not for their asymptotical
performance, but for number of blocks of
external memory they access.

That is what needed for modern hardware!

Emerging science

There is an emerging class of “cache
oblivious” algorithms that perform equally
good (is some sense) on any memory
hierarchy with any [unknown] cache sizes.

Practical and theoretical results are limited.
Lots of room for actual and new research.

Thank you for your attention

Questions?

Roman Elizarov
Devexperts, 2006
elizarov@devexperts.com

	High Performance Data Structures:�Theory and Practice
	High performance?
	Programs = Algorithms + Data Structures
	Classical algorithms analysis
	Performance matters…
	Performance… anybody?
	Does it matter for small Ns?
	Business … as usual
	Performance-critical areas
	Not solved?
	But all algos & DSs are there to use!
	Theory
	Practice vs Theory
	Reality strikes back
	A very simple demo
	… and results
	Modern computing
	Modern computing cont’d
	A problem (as example)
	Hash tables
	Chaining
	Linear addressing
	Let’s check it out
	… and results
	Conclusions
	Emerging science
	Thank you for your attention

