Copyright © 2006 Intel Corporation. All Rights Reserved.

Threading Methodology
based on Intel® Tools

Denys Kotlyarov
VENIANEIEDRITE

=

Software

Agenda

A Generic Development Cycle
Case Study: Prime Number Generation

Common Performance Issues

What is Parallelism?

Two or more processes or threads execute at the same time

Parallelism for threading architectures

* Multiple processes
- Communication through Inter-Process Communication (IPC)

* Single process, multiple threads
- Communication through shared memory

What is Parallelism?

Two or more processes or threads execute at the same time

Parallelism for threading architectures

* Multiple processes
- Communication through Inter-Process Communication (IPC)

Amdahl's Law

Describes the upper bound of parallel execution speedup

Tparallel = {(1 'P) + P/ n} Tserial

]
n = number of processors

0
z
|_
l SDEEdUD = Tserial / TparaIIeI

Amdahl's Law

Describes the upper bound of parallel execution speedup

Speedup =T

05
Tparallel = {(ﬂ-l' P/ n} Tserial

serial

+ OJ25

n = number of processors

/T 1.0/0.75=1.33

parallel

Amdahl's Law

Describes the upper bound of parallel execution speedup

05 + 00

T ={(1-P) + P/} T_..
parallel {(_) } serial
n = number of processors

T 1.0/05 =20

parallel

Serial code limits speedup

; intel)

Speedup =T

serial

Processes and Threads

Modern operating systems load programs as processes
- Resource holder
thread - Execution

main() A process starts executing at its entry point as a thread

Stack

Threads can create other threads within the process
Stack Stack * Each thread gets its own stack

All threads within a process share code & data segments

thread .- thread

Code segment

Data segment

Threads - Benefits & Risks

Benefits

* |ncreased performance and better resource utilization
- Even on single processor systems - for hiding latency and increasing throughput

* |PC through shared memory is more efficient
NNS

* |ncreases complexity of the application

* Difficult to debug (data races, deadlocks, etc.)

Commonly Encountered Questions with Threading Applications

Where to thread?

How long would it take to thread?

How much re-design/effort is required?

s it worth threading a selected region?
What should the expected speedup be?

Will the performance meet expectations?
Will it scale as more threads/data are added?

Which threading model to use?

~,
intel

Prime Number Generation

bool TestForPrime(int val)
{ /llet's start checking from 3
int limit, factor = 3;
i factor limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))
factor ++;

return (factor > limit);

}

void FindPrimes(int start, int end)

{

3
5
/
S,
1
3

int range = end - start + 1;
for(inti=start;i<=end;i+=2)
{
if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;
ShowProgress(i, range);

}

1
1

|

NN NN N
w w w w W
~ b =

T
haedl

C

—_—)
0~

{inl:el'
pare

11

(intel’

Prime Number Generation

i factor

3

5 4

A 23

9 4

(AR 23

sl 234

~=2
234
234

intel.

12

bool TestForPrime(int val)

{ /llet's start checking from 3
int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factnr +4

e COAWINDOWS\system 3 2\emd. exe

C:\classfiles\PrimeSingle\Release>PrimeSingle.exe 1 20
180%

& primes found between 1 and 20 in

C:Z\classfiles\PrimeSingle\Release>

L int range = end - start + 1;
for(inti=start;i<=end;i+=2)
{
if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;
ShowProgress(i, range);

}

0.80 secs

Demo 1

Run Serial version of Prime code
* Compile with Intel compiler in Visual Studio
* Run a few times with different ranges

Development Methodology

Analysis

* Find computationally intense code

Design (Introduce Threads)

* Determine how to implement threading solution
Debug for correctness

* Detect any problems resulting from using threads
Tune for performance

* Achieve best parallel performance

~,
intel)
§

Development Cycle

Analysis
=\iunes Perdonmance Analyzer

Design (Introduce Threads)
-Intel® Performance libraries: IPP and MKL
-OpenMP* (Intel® Compiler)
-Explicit threading (Win32*, Pthreads™)
Debug for correctness

el hihnead CReCKen
el DeEBUGEEr

Tune for performance

=Intel=hread Profiler
=\iune™ Perdonmance Analyzer

intel

15

Analysis - Sampling

Use VTune Sampling to find hotspots in application

Let's use the project PrimeSingle for analysis
* PrimeSingle <start> <end>

Usage: PrimeSingle 1 1000000

Analysis - Sampling

Use VTune Sampling to find hotspots in application

Function

_RTC_CheckEsp

wioid FindPrimesz{int int]
Frtf

_ftal2

vioid ShowProgresz{int int]

’ bool TeztForPrimelint]

17

Analysis - Sampling

bool TestForPrime(int val)
{ /llet's start checking from 3
int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))
factor ++;

Use VVTune Sampling to find hag

Function

_RTC_CheckEszp .
return (factor > limit);
vioid FindPrirmesz(int.int]

Frtf

_ftal2

vioid ShowProgrezz(int int)

P bool T e=ztForPrimelint]

|dentifies the time consuming regions

& t [- — -
== 1 (intel/

Analysis - Call Graph

rmain

Frirme.
Frime.ex
Frirme. exe
Prirne.exe
Frirme.exe
Prirme.exe
Frirme.
Frirme.

FindPrimes
GetCommandLineArguments

main

This is the level in
the call tree where
we need to thread

Used to find proper levelin the
call-tree to thread

(]

P 3
[y

Analysis

Where to thread?
* FindPrimes()

Is it worth threading a selected region?

e C - \classfiles\PrimeSingle\Release>PrimeSingle.exe 1 5000000
180%

348513 primes found between 1 and 50008088 in 11.73 sacs

=
= - C:\classfiles\PrimeSingle’\Release>_
* Appears to have minimal dependenc

* Appears to be data-parallel
* Consumes over 95% of the run time

Baseline

measurement

20

Demo 2

Run code with ‘1 5000000’ range to get baseline measurement
* Make note for future reference

Run VTune analysis on serial code
* What function takes the most time?

 sotare | :

Foster’s Design Methodology

From Designing and Building Parallel Programs by lan Foster

Four Steps:

- Dividing computation and data

- Sharing data between computations
* Agglomeration

- Grouping tasks to improve performance

- Assigning tasks to processors/threads

~,
intel

Designing Threaded Programs

The

* Divide problem into tasks Problem

* Determine amount and pattern of communication
Agglomerate

¢ Combine tasks

* Assign agglomerated tasks to created threads

il

Combined Tasks

Parallel Programming Models

Functional Decomposition

* Task parallelism

* Divide the computation, then associate the data
* |ndependent tasks of the same problem

Data Decomposition
* Same operation performed on different data
* Divide data into pieces, then associate computation

 sotare | “

Design

What is the expected benefit?

Speedup(2P) = 100/(96/2+4) = ~1.92X

How do you achieve this with the least effort?

Rapid prototyping with OpenMP

How long would it take to thread?

How much re-design/effort is required?

(< s (intel')

OpenMP

Fork-join parallelism:;

* Master thread spawns a team of threads as needed
* Parallelism is added incrementally
- Sequential program evolves into a parallel program

— i/ "
— B S T —
/ S ~ . \\\\—//4’
Master \

Thread

Parallel Regions

26

Design

H#pragmal omp parallel for

for(intigr Start; i <=end; i+=2 }{

rPrime(i))
OpenMP rimes[gPrimesFound++] = i;

ShowProgress(i, range);

27

Design

H#pragma omp parallel) for
for(inti=start;i <= epd; i+=2
if(TestForPrime(i))

globalPrimes[gPrimesfound++] = i;

ShowP
| Sl Create threads here for
this parallel region

28

Design

Hpragma omp

for(inti=start;i <=end; i+=2

parallel

if(TestForPrime(i))

globalPrimes[gPrimesFound++

ShowProgress(i, range);

]

for

| Divide iterations
| of the for loop

29

tpragma omp parallel for
for(inti=start;i <=end;i+=2 }{
if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

:\classfiles\PrimeOpenMP\Debug>Prime0penMP.exe 1 5000000
90%

348018 primes found between 1 and 5000008 in 8.36 secs

:hclassfiles\PrimeOpenHP\Debug>

Demo 3

Run OpenMP version of code
* Compile code

* Run with 1 5000000’ for comparison
- What is the speedup?

Design

What is the expected benefit?

How do you achieve this with the least effort?

Speedup of 1.40X (less than 1.92X)

How long would it take to thread?

How much re-design/effort is required?

s this the best speedup possible?

Software

intel) @

svelassfiles\PrimeOpenHPDebug»PrimedpentP exe 1 5000000
0%

48031 Jorimes found between 1 and 50680000 in B.36

C:hclagsfilee PrimeOpendPyDebugPrimedpendP exe 1 5800003

a0%.

348030 primes found between 1 and 5280808 in B.42

:\elassfiles\PrimedpenMP\Debug>PrimeldpenkF exe | S0OQ0ARA
9%

348022 primes Found between 1 and S000838 in &.34 secs

ihvelasafiles\PrimeOpenMPyDebug:Prime0pentP . exe 1 SE0Q0Q0E
90

342044 primes Found between 1 and S290808 in 2.4

:hvelassfiles\PrimeOpenMPyDebug>PrimelpentP exe 1 S00080Q
SO%

@- imes found hetween 1 and SO2080@ in 2.23 secs

Debugging for Correctness

Intel® Thread Checker pinpoints notorious threading bugs like data races, stalls and
deadlocks

VTune™ Performance Analyzer

Intel’ Thread Checker

Primes.exe
(Instrumented)

[Primes.exe e

threadchecker.thr
(result file)

Prime0pentP.cpp - Thread Checker - Activiby: |

1zt Accezs[Ling] £ |

Context[Best] | D | Shart Descrip... '-T| Severity

Description | Count | Filtered

[=] Group 1: 106 [Diagnostics: 2; Filkered: 0]

WWhale
Program 1
Wwihole
Program 2

[= Group 2 110 [Diaghostics: 2; Filkered: 0]

B Thread termination

T Thread termination

S WAL T SR LIS 4 200

Wit -x Wwrite

Frime0pentd & data-race

“Wwiite -» Read

Frime0pentd 4 data-race

[=] Group 3: 117 [Magnoztics: 1; Filkered: 0)

Whiole
Program 3

[=] Group 4: 77 [Diagnostics: 3; Filkered: 0]

2 Thread termination

Wfrite -x Wit

Frime0pentd 3 data-race

Wwiite -» Read

Prime0pentd 2 data-race

<

Thread Info at "Frimed pentP.cpp': 106 - includes
gtack allocation of 3145728 and uze of 40596 bytes

Thread Info at "Frimed pentP.cpp': 106 - includes
gtack alocation of 1048576 and uze of 40396 byptes

b eman write at "'PrimelpentdP.cpp': 110 conflicts
with & prior mernony write at
"PrimelpentdP.cpp': 110 [output dependence)

kemary read at "Primel pentdP.cpp': 110 conflicts
with & priar memory write at
"PrimelpentP.cpp':110 [flow dependence]

Thread Info at "Primel penbdP.cpp': 117 - includes
gtack allocation of 1048576 and uze of 40596 bytes

b emany write at "PrimelpentdP.cpp':7¥ conflicts
with & prior memory write at "Primel pentP.cpp' 77 1
[output dependence)

kemary read at "PrimelpentdP.cpp': 77 conflictz
with & prior memory write at "Primel penbP.cpp' 77 1
[flow dependence)

Diagnostics I Stack Traces I Source "v’iewl

(intel

Intel

Thread Checker

Prime0pentP.cpp - Thread Checker - Activiby:

(intel

= 13t Access(line] |
=

Prime0peniP.cpp - Thread Checker - Activiby: |

=

Intel

Thread Checker

| 1=t Access I - | -

Location of the firzt thread that ARCE e

Source

wag executing at the time the

caonflict oocurred Ox111C
Stack:

TShowProgress, (GETAEHHT o
"PrimelpentP.cpp': 77 i
[FrimefpentdP.ere, 0x1374] —
PFindPrirmesiEiEy AHH @
"FrimelpentdP.cpp':112
[Primeld pentdP.exe, 0x1:29d]
PFindPrimes. @ AHH e
"PrimedpentiP.cpp': 106
[Primeld pentdP.exe, 0x119c]

0x13 60

WU WUONAL T SAUB LIS 4 U0 0,

O0x136E

0=1374

O0x13E3
O0x13DF

wolid 3howProgress(int wal, int range)
i

int percentDhone = 0;
gProgress++;
percentDone = (int) ((float) gProgress/ (fl1ox

if|{ percentDone % 10 == 0)
printfi"vbi\hiybYb:3ds:™, percentDone) ;

ge *200.0f + 0.5 :

| 2nd Access I - | -

Location of the second thread ARCE e

R

Source

that waz executing at the time the
canflict occurred O0x111cC

Stack:

ShowProgress, (BE AMHHT .
"PrimelpentP.cpp': 77 i
[FrimelpentdP.exe, Ox1374] —
PFindPrirmesiEiEy AHH @
"PrimelpentP.cpp':112
[Primeld pentdP.exe, 0x1:29d]
PFindPrimes. (S A HH e
"FrimedpentdP.cpp': 106
[Primeld pentdP.exe, 0x119c]

Ox13a0

Ox137A

O0x13E3
O0x13DF

-

wolid 3howProgress(int wal, int range)
i

int percentDhone = 0;

gProgress++;

percentDone = [(int) [(float) gProgress/ (float)range *200.0£f + 0.5f) :

if|{ percentDone % 10 == 0)
printfi"vhbihibYbh:3d::"™, percentDone) ;

2

Diagnnstics] Stack Traces Source Yiew |
Diagnostice | 2tack |1aces | SOuce YView |

intel)

Demo 4

Use Thread Checker to analyze threaded application
* (Create Thread Checker activity

* Run application

* Are any errors reported?

 sotare | .

Debugging for Correctness

How much re-design/effort is required?

Thread Checker reported only 3

dependencies, so effort required should
be low

How long would it take to thread?

(< " (intel')

Debugging for Correctness
Possible Solutions: Solution 1 - Not Optimal

#pragma omp parallel for

for(inti = start; i <= end; i+= 2){ Will create a critical

if(TestForPrime(i)) section for this
#pragma omp critical / reference

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

Will create a critical

section for both these
references

#pragma omp critical

{

gProgress++;

percentDone = (int)(gProgress/range *200.0f+0.5f)
}

39

Debugging for Correctness
Possible Solutions: Solution 2 - Optimal

void FindPrimes(int start, int end)

{

// start is always odd

intrange =end - start + 1; \/\Ii” DerfOI'm atomiC adding
for this variable

#pragma omp parallel for
for(inti=start;i<=end;i+=2)
{
if(TestForPrime(i))
globalPrimes[Interlockedincrement{&gPrimesFound)] = i;

ShowProgress(i, range);

}
}
Will perform atomic adding
;/oid ShowProgress(int val, int range) for ‘th |S Va nable

long percentDone, localProgress;

localProgress = Interlockedincrement(&gProgress);
percentDone = (int)((float)localProgress/(float)range*200.0f+0.5f);

if(percentDone % 10 == 0 && lastPercentDone < percentDone / 10){
printf("\b\b\b\b%3d%%", percentDone);
lastPercentDone++;
}
}

{intel'

Software

40

5.
~r
(;;

Demo 5

Modify and run OpenMP version of code
* Add Interlockedincrement to code
* Compile code

* Run from within Thread Checker
- If errors still present, make appropriate fixes to code and run again in Thread Checker

* Run with 1 5000000’ for comparison
- Compile and run outside Thread Checker
- What is the speedup?

~,
intel)
"

Correctness

Correct answer, but performance has slipped to ~1.33X

— |
e C:AWINDOWS\system32\cmd. exe :!

C:\classfiles\PrimeOpenMP\Debug>PrimeQpenMP exe 1 S000000
160%

348513 primes found between 1 and 50000088 in 8.80 secs

C:\classfiles\PrimeOpenMP\Debug>_

Is this the best we can expect from this algorithm?

No! From Amdahl's Law, we expect

speedup close to 1.9X

(=2 2 (intel')

Common Performance Issues

Due to thread creation, scheduling ...
* Excessive use of global data, contention for the same synchronization object
* |mproper distribution of parallel work

* No sufficient parallel work

~,
intel)
°

Tuning for Performance

Thread Profiler pinpoints performance bottlenecks in threaded applications

VTune™ Performance Analyzer

[Primes.c Thread Profiler

Primes.exe
(Instrumented)

Primes.exe
Bistro.tp/quide.gvs
=) (result file) (intel')

Thread Profiler for OpenMP

Reference Run: AD: TMOpenMPiguide-01a.gvs [ChclaviclassfilesiLinus{Th =

Whole Program
4 Estimated Speedups

Number of

Speedup Curves:
upper, — lower. — ideal
Speedups of Runs:
upper, ¢ lower, * actual

o] 1 2 3 4 5 G 7 g 9

i@l:aem‘— D A
| |# o Bar CTE: | Fa

| ds |_[mP s

Thread Profiler for OpenMP

serial

E Leoand
Lagel Mum Iheesds

<

1runs 1 showirg, 3 regions 3 shaving

Daa | Toreads | Reglome | Suseary

Region H1
Estimated Speedups

Spuedup Curves:
upper, — lower, — ideal
Speedups of Fluns:
upper, # lower, * actual

Thread Profiler for OpenMP

n' -
=)
o

=)
1|@1

5] 7

0.140
0.140

]-. runs 1

Thread Profiler (Expllat Threads)

TF: Mimeopermpees (1203 PR 2MEFe 17 = =

Gives a high level summary

of execution

|||| sl Faths | Prafile | Timeline

Thread Profiler (Explicit Threads)

¥ 1 TE=21E-1 1 817 3 T 3 3 k- 3|
e B R T P P S e e e e e R e P R S et e R Rl] L o
M Thieed sl
0 Thread pac..

[

Very Active

Critical F‘:r:hsl Prafia Timgling |

'inl:el'x'

Thread Profiler (Explicit Threads)

¥ 1 TE=21E-1 1 817 3 T 3 3 k- 3|
e B R T P P S e e e e e R e P R S et e R Rl] L o
M Thieed sl
0 Thread pac..

Less Active

Critical F‘:r:hsl Prafia Timgling |

'inl:el'x'

Thread Profiler (Explicit Threads)

Inpeet

Tira 312550 005
Iges Syns 0
Thread 1
hpecdng Threago 2

l:l.-':u' T350E

Impact

Time 635 770e-005 §

Crilizal Seclion 23
Thread 3
Impacirg Thread 1

13 :|F'| J.-:ll"|-:l 1-5:'."3

F Skow Th
IR Thresd scti
0 Thissdraa..

= Show Ciil..

Cruise
mm Flcck
== |mpact

Crearhaad

P Show For

= ko

< dren

Thread Profiler (Explicit Threads)

Jut Locaton
Iranztion Thrasda
Pre Thiasd 3
rfdul Theead 3
Neak Thread 1

Sync Obicct Crtizal Seclion 23
Eank

mleckc:3th
r path fles Mnnida 07 vs enbidicmars
ik ez
foHe 3es
r path: Fies?ouilds\ 307w oionbldiedisrc
nnnit
\prrk o
[wrs Pl w207 R,
= il

(e ITH [T

|
waid Fral Prirress(inling
PimeCoenMP.cop 116
r path

Nxl P25
0x125E

0x136E
ox1372
031357
O0x13D<L

Ux1351

Ox14C0

T w1432

L

105

L

107
108

B%S

Jource
nThreads = gMaxTharssds:

prinbfiilsags:- %5 <start range> <end renges 2nom Chreads== A\n",

exitf{-1):

wirnisd ShawProgress{ inl w21, int

rangs=
iant percentbDone = OF
fpragma omp critical

gPragresssd;

percentions — (int) [{slaat)gProgress/ (float)rance *200.0f + U.5f):
1
I

if(percentdone & 10 ==

TrsLParPrim={ins:
inr limit, factor = 33

limwit = (lang) (sgetf{(floaT)ival)+0.5£);

whllel (FAackor <= 1imib)l & (weal % Factae))
factor +#;

return sfactor o lamitls
'

woid Findrrimaes(int start, int end)

slhart o d".n.'-'l}'"
int range - &nd - start + 1:

argw [07):

Performance

This implementation has implicit synchronization calls

This limits scaling performance due to the resulting context

SV ES

1:Thead | () R R R OR

2 Thread

EI:ThrEe-Eu:I_I ﬂ w ﬂ if ([percentDone % 10 == 0)

printf ("hbhhbhbhi\bhi3dss", percentDone) ;

Back to the design stage

53

Demo 6

Use Thread Profiler to analyze threaded

application

* Use /Qopenmp_profile to compile and link

* (Create Thread Profiler Activity (for explicit threads)

* Run application in Thread Profiler

* Find the source line that is causing the threads to be inactive

 sotare | .

Four Thread Example

]-. runs 1

Four Thread Example

AOTO

0.140
0.140

]-. runs 1

Four Thread Example

-

Thread O
342 factors to test 116747

Thread 2
789 factors to test 623759

7 g 9 1

Label [Total [Paralle Sequentia Thread 3

Il 0T 0.000
A0TZ2 9266 7.BEZ 0.000

AoTa | soeel 8177l 00m] | 934 factors to test 873913

1000000

i runs i-si'u-:-'.-'-.'i'ru;l_”: Gt

Data | Threads | F Sumrmary

Fixing the Load Imbalance

Distribute the work more evenly

intel

58

Fixing the Load Imbalance

Distribute the work more evenly

void FindPrimes(int start, int end)

{
// start is always odd
intrange = end - start + 1;

#pragma omp parallel for schedule(static, 8)
for(inti=start;i<=end;i+=2)
{
if(TestForPrime(i))
globalPrimes[Interlockedincrement(&gPrimesFound)] = i;
ShowProgress(i, range);

59

Demo 7

Modify code for better load balance

* Add schedule (static, 8) clause to OpenMP parallel for pragma
* Re-compile and run code

* What is speedup from serial version now?

~,
intel

Final Thread Profiler Run

| TR ER A Reference Run:

Whiole Program
CEtimatod Specdups

0 1 2 | 4
HMumber of Threads

¢ CAWINDOWS\system32\cmd.exe

C:\classfiles\PrimeOpenMP\Release>PrimeOpenMP.exe 1 5000000
90%

348513 primes found betuween 1 and 5000000 in 3.92 secs

S - \classfiles\PrimeOpenHMP\Release> -

LRSPE KMF | IHR&aRY

Speedup achieved is 1.80X

intel.

Software

Comparative Analysis

Baseline = 1X

| S0 | WA | Imbalanced = 1.40X

| || Balanced = 1.80X

Threading applications require multiple iterations of
going through the software development cycle

Threading Methodology
What's Been Covered

Four step development cycle for writing threaded code from
serial and the Intel® tools that support each step

Analysis

Design (Introduce Threads)

Debug for correctness

Tune for performance

Threading applications require multiple iterations of
designing, debugging and performance tuning steps

Use tools to improve productivity

~,
intel

