
Copyright © 2006 Intel Corporation. All Rights Reserved.

Threading Methodology
based on Intel® Tools

Denys Kotlyarov
Vasiliy Malanin

2

Agenda

A Generic Development Cycle

Case Study: Prime Number Generation

Common Performance Issues

3

What is Parallelism?

Two or more processes or threads execute at the same time

Parallelism for threading architectures

• Multiple processes
– Communication through Inter-Process Communication (IPC)

• Single process, multiple threads
– Communication through shared memory

4

What is Parallelism?

Two or more processes or threads execute at the same time

Parallelism for threading architectures

• Multiple processes
– Communication through Inter-Process Communication (IPC)

• Single process, multiple threads
– Communication through shared memory

5

n = number of processors

Tparallel = {(1-P) + P/n} Tserial

Speedup = Tserial / Tparallel

Amdahl’s Law

Describes the upper bound of parallel execution speedup
(1

-P
)

P

T se
ria

l

6

n = number of processors

Tparallel = {(1-P) + P/n} Tserial

Speedup = Tserial / Tparallel

Amdahl’s Law

Describes the upper bound of parallel execution speedup
(1

-P
)

P

T se
ria

l

(1
-P

)

P/2

0.5 + 0.5 + 0.250.25

1.0/0.75 = 1.0/0.75 = 1.331.33

n = 2n = 2

7

n = number of processors

Tparallel = {(1-P) + P/n} Tserial

Speedup = Tserial / Tparallel

Amdahl’s Law

Describes the upper bound of parallel execution speedup

Serial code limits speedup

(1
-P

)
P

T se
ria

l

(1
-P

)
n = n = ∞∞

P/∞∞
…

0.5 + 0.5 + 0.00.0

1.0/0.5 = 1.0/0.5 = 2.02.0

8

Processes and Threads
Modern operating systems load programs as processes

– Resource holder
– Execution

A process starts executing at its entry point as a thread

Threads can create other threads within the process

• Each thread gets its own stack

All threads within a process share code & data segments

Code segment

Data segment

thread
main()

…thread thread

Stack Stack

Stack

9

Threads – Benefits & Risks

Benefits

• Increased performance and better resource utilization
– Even on single processor systems - for hiding latency and increasing throughput

• IPC through shared memory is more efficient

Risks

• Increases complexity of the application

• Difficult to debug (data races, deadlocks, etc.)

10

Commonly Encountered Questions with Threading Applications

Where to thread?

How long would it take to thread?

How much re-design/effort is required?

Is it worth threading a selected region?

What should the expected speedup be?

Will the performance meet expectations?

Will it scale as more threads/data are added?

Which threading model to use?

11

Prime Number Generation

bool TestForPrime(int val)
{ // let’s start checking from 3

int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

int range = end - start + 1;
for(int i = start; i <= end; i += 2)
{

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}

i factor

3 2
5 2
7 2 3
9 2 3

11 2 3
13 2 3 4
15 2 3
17 2 3 4
19 2 3 4

12

Prime Number Generation

bool TestForPrime(int val)
{ // let’s start checking from 3

int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

int range = end - start + 1;
for(int i = start; i <= end; i += 2)
{

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}

i factor

3 2
5 2
7 2 3
9 2 3

11 2 3
13 2 3 4
15 2 3
17 2 3 4
19 2 3 4

13

Demo 1

Run Serial version of Prime code

• Compile with Intel compiler in Visual Studio

• Run a few times with different ranges

14

Development Methodology

Analysis

• Find computationally intense code

Design (Introduce Threads)

• Determine how to implement threading solution

Debug for correctness

• Detect any problems resulting from using threads

Tune for performance

• Achieve best parallel performance

15

Development Cycle

AnalysisAnalysis
––VTuneVTune™™ Performance AnalyzerPerformance Analyzer

Design (Introduce Threads)Design (Introduce Threads)
––IntelIntel®® Performance libraries: IPP and MKLPerformance libraries: IPP and MKL

––OpenMP* (IntelOpenMP* (Intel®® Compiler)Compiler)

––Explicit threading (Win32*, Pthreads*)Explicit threading (Win32*, Pthreads*)

Debug for correctnessDebug for correctness
––IntelIntel®® Thread CheckerThread Checker

––Intel DebuggerIntel Debugger

Tune for performanceTune for performance
––IntelIntel®® Thread ProfilerThread Profiler

––VTuneVTune™™ Performance AnalyzerPerformance Analyzer

16

Let’s use the project PrimeSingle for analysis

• PrimeSingle <start> <end>

Usage: PrimeSingle 1 1000000

Analysis - Sampling

Use VTune Sampling to find hotspots in application

17

Let’s use the project PrimeSingle for analysis

• PrimeSingle <start> <end>

Usage: PrimeSingle 1 1000000

Analysis - Sampling

Use VTune Sampling to find hotspots in application

18

Let’s use the project PrimeSingle for analysis

• PrimeSingle <start> <end>

Usage: PrimeSingle 1 1000000

Analysis - Sampling

Use VTune Sampling to find hotspots in applicationbool TestForPrime(int val)
{ // let’s start checking from 3

int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

// start is always odd
int range = end - start + 1;
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}

Identifies the time consuming regions

19

Analysis - Call Graph

This is the level in
the call tree where
we need to thread

Used to find proper level in the Used to find proper level in the
callcall--tree to threadtree to thread

20

Analysis

Where to thread?

• FindPrimes()

Is it worth threading a selected region?

• Appears to have minimal dependencies

• Appears to be data-parallel

• Consumes over 95% of the run time

Baseline
measurement

21

Demo 2

Run code with ‘1 5000000’ range to get baseline measurement

• Make note for future reference

Run VTune analysis on serial code

• What function takes the most time?

22

Foster’s Design Methodology

From Designing and Building Parallel Programs by Ian Foster

Four Steps:

• Partitioning
– Dividing computation and data

• Communication
– Sharing data between computations

• Agglomeration
– Grouping tasks to improve performance

• Mapping
– Assigning tasks to processors/threads

23

Designing Threaded Programs

Partition

• Divide problem into tasks

Communicate

• Determine amount and pattern of communication

Agglomerate

• Combine tasks

Map

• Assign agglomerated tasks to created threads

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program

24

Parallel Programming Models

Functional Decomposition

• Task parallelism

• Divide the computation, then associate the data

• Independent tasks of the same problem

Data Decomposition

• Same operation performed on different data

• Divide data into pieces, then associate computation

25

Design

What is the expected benefit?

How do you achieve this with the least effort?

How long would it take to thread?

How much re-design/effort is required?

Rapid prototyping with OpenMPRapid prototyping with OpenMP

Speedup(2P) = 100/(96/2+4) = ~1.92X

26

OpenMP

Fork-join parallelism:

• Master thread spawns a team of threads as needed

• Parallelism is added incrementally
– Sequential program evolves into a parallel program

Parallel Regions

Master
Thread

27

Design

#pragma omp parallel for

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

OpenMP

28

Design

#pragma omp parallel for

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}
Create threads here for
this parallel region

29

Design

#pragma omp parallel for

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

Divide iterations
of the forfor loop

30

Design

#pragma omp parallel for

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

31

Demo 3

Run OpenMP version of code

• Compile code

• Run with ‘1 5000000’ for comparison
– What is the speedup?

32

Design

What is the expected benefit?

How do you achieve this with the least effort?

How long would it take to thread?

How much re-design/effort is required?

Is this the best speedup possible?

Speedup of 1.40X (less than 1.92X)Speedup of 1.40X (less than 1.92X)

33

Debugging for Correctness

Is this threaded implementation right?

No! The answers are different each time …

34

Debugging for Correctness

Intel® Thread Checker pinpoints notorious threading bugs like data races, stalls and
deadlocks

IntelIntel®® Thread CheckerThread Checker

VTuneVTune™™ Performance AnalyzerPerformance Analyzer

+DLLs (Instrumented)

Binary
Instrumentation

Primes.exe Primes.exe
(Instrumented)

Runtime
Data

Collector

threadchecker.thr
(result file)

35

36

PINPOINTS

SOURCE

CODE

37

Demo 4

Use Thread Checker to analyze threaded application

• Create Thread Checker activity

• Run application

• Are any errors reported?

38

Debugging for Correctness

How much re-design/effort is required?

How long would it take to thread?

Thread Checker reported only 3
dependencies, so effort required should

be low

39

Debugging for Correctness
Possible Solutions: Solution 1 – Not Optimal

#pragma omp parallel for

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

#pragma omp critical

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

#pragma omp critical

{

gProgress++;

percentDone = (int)(gProgress/range *200.0f+0.5f)

}

Will create a critical
section for this
reference

Will create a critical
section for both these
references

40

Debugging for Correctness
Possible Solutions: Solution 2 – Optimal
void FindPrimes(int start, int end)

{

// start is always odd

int range = end - start + 1;

#pragma omp parallel for

for(int i = start; i <= end; i += 2)

{

if(TestForPrime(i))

globalPrimes[InterlockedIncrement(&gPrimesFound)] = i;

ShowProgress(i, range);

}

}

void ShowProgress(int val, int range)

{

long percentDone, localProgress;

localProgress = InterlockedIncrement(&gProgress);

percentDone = (int)((float)localProgress/(float)range*200.0f+0.5f);

if(percentDone % 10 == 0 && lastPercentDone < percentDone / 10){

printf("\b\b\b\b%3d%%", percentDone);

lastPercentDone++;

}

}

Will perform atomic adding
for this variable

Will perform atomic adding
for this variable

41

Demo 5

Modify and run OpenMP version of code

• Add InterlockedIncrement to code

• Compile code

• Run from within Thread Checker
– If errors still present, make appropriate fixes to code and run again in Thread Checker

• Run with ‘1 5000000’ for comparison
– Compile and run outside Thread Checker
– What is the speedup?

42

Correctness

Correct answer, but performance has slipped to ~1.33X

Is this the best we can expect from this algorithm?

No! From Amdahl’s Law, we expect
speedup close to 1.9X

43

Common Performance Issues

Parallel Overhead

• Due to thread creation, scheduling …

Synchronization

• Excessive use of global data, contention for the same synchronization object

Load Imbalance

• Improper distribution of parallel work

Granularity

• No sufficient parallel work

44

Tuning for Performance

Thread Profiler pinpoints performance bottlenecks in threaded applications

Thread ProfilerThread Profiler

VTuneVTune™™ Performance AnalyzerPerformance Analyzer

+DLL’s (Instrumented)

Binary
Instrumentation

Primes.c

Primes.exe
(Instrumented)

Runtime
Data

Collector

Bistro.tp/guide.gvs
(result file)

Compiler
Source

Instrumentation

Primes.exe

/Qopenmp_profile

45

Thread Profiler for OpenMP

46

Thread Profiler for OpenMP

serial

serial

parallel

47

Thread Profiler for OpenMP

Thread 0

Thread 1

Thread 2

Thread 3

48

Thread Profiler (Explicit Threads)

Gives a high level summary
of execution

49

Thread Profiler (Explicit Threads)

Very Active

50

Thread Profiler (Explicit Threads)

Very ActiveLess Active

51

Thread Profiler (Explicit Threads)

Very ActiveLess Active

52

Thread Profiler (Explicit Threads)

53

Performance

This implementation has implicit synchronization calls

This limits scaling performance due to the resulting context

switches

Back to the design stage

54

Demo 6

Use Thread Profiler to analyze threaded

application

• Use /Qopenmp_profile to compile and link

• Create Thread Profiler Activity (for explicit threads)

• Run application in Thread Profiler

• Find the source line that is causing the threads to be inactive

55

Four Thread Example

56

Four Thread Example

57

Four Thread Example

50000
0

250000

75000
0

1000000

Thread 0

342 factors to test 116747

Thread 1

612 factors to test 373553

Thread 2

789 factors to test 623759

Thread 3

934 factors to test 873913

58

Fixing the Load Imbalance

Distribute the work more evenly

59

Fixing the Load Imbalance

Distribute the work more evenly

void FindPrimes(int start, int end)
{

// start is always odd
int range = end - start + 1;

#pragma omp parallel for schedule(static, 8)
for(int i = start; i <= end; i += 2)
{

if(TestForPrime(i))
globalPrimes[InterlockedIncrement(&gPrimesFound)] = i;

ShowProgress(i, range);
}

}

60

Demo 7

Modify code for better load balance

• Add schedule (static, 8) clause to OpenMP parallel for pragma

• Re-compile and run code

• What is speedup from serial version now?

61

Final Thread Profiler Run

Speedup achieved is 1.80XSpeedup achieved is 1.80X1.80X

62

Comparative Analysis

Baseline = 1X

Imbalanced = 1.40X

Balanced = 1.80X

Threading applications require multiple iterations of
going through the software development cycle

63

Threading Methodology
What’s Been Covered

Four step development cycle for writing threaded code from

serial and the Intel® tools that support each step

Analysis

Design (Introduce Threads)

Debug for correctness

Tune for performance

Threading applications require multiple iterations of

designing, debugging and performance tuning steps

Use tools to improve productivity

