
Alexandre Iline,
Maria Tishkova,
Alexander Kouznetsov

Java UI Testing
Technology and real experience

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Who are we
Work for SUN Microsystems
Some products we test:

> NetBeans
and NetBeans packs:
> Enterprise Pack (Java Studio Enterprise)
> Mobility Pack
> Visual Web Pack (Java Studio Creator)
> C/C++ Development Pack, Sun Studio

What we're going to talk about
How to make UI testing ...
• less expensive

by doing test automation, but doing it smart

• more useful
shorter test cycles, earlier bug detection

• more fun
there is no fun in testing UI manually

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Testing is ...
• ... something which ensures product quality
• ... something which helps development to verify

against regressions
• ... activities which have to be done repeatedly
• ... needed to be done for any supported

configurations

UI Testing is ...
• ... a testing

As such, it has to be done repeatedly for each and every release
and also every supported configuration

• ... a tedious job
of clicking through tons of screens, menus and buttons

• ... very expensive
if not done right, full testing takes a huge amount of time

Consider an example ...

UI Testing example
Vehicle ordering

> Open car setting dialog
> Change make (“Subaru”)
> Change model (“Forester”)
> Change color (“Light Gray”)
> Change year (“1998”)
> Submit
> Verify that the information has been submitted
> Verify what information has been submitted

Test automation
• Reduces price of testing

Eliminates (partially) need of repeating manual test cycles

• Shortens test cycle
Automated tests work faster and could be executed simultaneously

for different configurations

• Ensures earlier bug detection
Automated tests could be executed as often as needed

• Deeper level of testing
With automated tests it is possible to go as deep into product as

needed.

• Makes testing fun!

Terminology
• Test

a (small) program which verifies tested product functionality
through product interface

• Suite
a set of tests which are executed together

• Harness
a (set of) auxiliary tool managing test execution, test result

representation, storage, and sometimes failure analysis

Approaches to UI automation
• Recording/coding

> User actions could be recorded into test
> Test could be coded in some language

• Language
> XML
> scripting languages
> high-level languages

• Coordinates/components
> Test operates in terms of event coordinates
> Test operates in terms of UI components and actions

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Tools
• Native vs. Java

Native tools are not good enough
• Commercial vs. open-source

No real offering from commercial tools: free tools provide
everything the commercial ones do.

• Rest is:
> Jemmy
> Abbot
> JFCUnit

Jemmy
• Open-source (http://jemmy.netbeans.org)
• Java library

new JComboBoxOperator(new JDialogOperator(”Car”))
 .selectItem(”Green”);

• Covers all Swing and AWT
• A lot of synchronization work is done behind the

scene
• Uses java.awt.Robot or event dispatching
• Easy to extend (http://jellytools.netbeans.org)

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Automation effectiveness formula

T
D + *T

S N
R

T
M * N

R
N

C*
E

A =

E
A

 - test automation effectiveness

T
D
 – tests development

T
S
 – tests support

T
M
 – manual tests execution

Time for ...
N

R
 – tested releases

N
C
 – tested configurations

Number of ...

N
C

*

Automation effectiveness charts

1 2 3 4 5 6 7 8
0

5

10

15

20

25

0

1

2

3

4

Nc = 1 Ratio

Auto Manual Effect

Time

1 2 3 4 5 6 7 8
0

5

10

15

20

25

0

1

2

3

4
Nc = 3 Ratio

Auto Manual Effect

Time

T
D
 = 5 * T

M
T

S
 = 0.1 * T

M
Assumptions: T

M
 = 1 engineer*week N

R
 = 8

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

The mantra
Multiple releases and supported configurations – test

support expenses is what we care about the most.

Hence, the mantra:
“No more than one change in test code for one

change in product code!”

There is only one way to do so: organize code into a
library

Two approaches to library creation
• Interface oriented

Library's provides coverage for are UI objects of the tested
products such as frames, dialogs, custom components,
etc.

• Concept oriented (COT)
Library covers concepts and logic of the product business

model.

Interface oriented approach

public class CarRecordDialogOperator {

 public void enterColor(String color) {

 //find the text field
 ...
 //type in the color
 ...
 //click the ok button.
 ...

 }

 public void enterModel(String model) {

 ...

 }

 ...

}

class MyTest() {

 public void testSetGreenColor() {

 new CarRecordDialogOperator()
 .enterColor("Light Gray");

 }

}

library test

Some changes in UI

This is OK!
No need to change existent tests

More changes...

Need to change the library? - YES

Need to change tests? - NO

How many changes it requires? - Only one (enterColor() method)

Yet more changes ...

Need to change the library? - YES

Need to change tests? - basically, YES. Could be “hacked”.

How many changes it requires? - Plenty, if not “hack”

And finally....

Need to change the library? - YES

Need to change tests? - YES

How many changes it requires? - Plenty - EVERY test

The same functionality implemented without “Car chooser” dialog

Interface approach: bottom line
• Good approach, but...

> Tests depend on UI so they are subject to change
when UI changes

• We need another level of abstraction
> UI independent (next slide)

Concept oriented approach

class MyTest() {
 public void testSetGreenCarColor() {
 new CarRecord().setColor(new CarColor("Green"));
 }
}

Test

While there are Green cars could be
entered in the system test does not need
to be changed

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Some misconceptions about
UI automation testing

● Testing is simple
● Recording is better
● Automation frees from work
● Tests is all you need
● No manual testing anymore
● Automation goes first

“Testing is simple”
• Testing is not very different from development.

> Same technical complexity
> Own development life-cycle
> Highly technical types of testing

code coverage, specification coverage, static testing, etc.
> Outcome is just as important

• Bug tracking system maintenance
• Tools, libraries support

“Recording is better”
• Hardly (or non) maintainable tests

> Good coding significantly reduces maintenance time
> Tests are sensitive to slightest UI behavior changes

• Tests are not accurate enough
> Recorder is not able to recognize some actions

• Tests are created too late
> Only after GUI is stabilized

• Not so much of time effectiveness in test creation
> You could code several similar tests at once

“Automation frees from work”
Things still need to be done:
• Libraries, framework creation and maintenance
• Test creation
• Test sustaining and maintenance
• Test execution management
• Failure results analysis
• Some manual testing

“Tests is all you need”
• Test harness...

> to run several tests at once (test suits)
> to start and stop an application being tested
> to ensure clean initial state
> to provide test data
> to catch the faults and successes

• We use XTest with our extensions

“Tests is all you need” cont.
• Infrastructure...

> to schedule and execute test runs
– on different platforms and configurations

> to get the latest builds
– of application being tested
– of tests and test framework

> to set up an application and its environment
> to collect and store results
> to perform results analysis

• We use Test4U and scripts

“No manual testing anymore”
• Do manual testing when...

> human eye is required
> number of runs is limited

• Automate only...
> tedious tests
> repeating tests, regression tests
> tests that hard to run manually

“Automation goes first”
• Don't start too early

> Product could significantly change

• Don't start too late
> Tests development takes time
> Time is needed to gain from the automation efforts

• What is the right moment?
> It depends ... (next slide).

What's the right moment
• Test framework, harness

> Once it is decided to go for automation
• Performance tests

> As early as possible
• Regular functional tests:

> Not before feature freeze
> With COT even earlier – once functional specification is

ready

Agenda

● Who are we
● Introduction to testing
● Tools
● Automation effectiveness
● The mantra and the two approaches
● Misconceptions
● Conclusion

Quality work. A problem area
• A bottleneck

Some formal testing needed for every release.
• A pain for development

“Shoot the tester” - heard it many times.
• Most consider it boring

Lower requirement to skills of quality engineer
• Really hard to do it right

No (or almost no) scientific research around it

Automation:

Chipper!

Faster!!

More Fun!!!

Alexandre Iline,
Maria Tishkova,
Alexander Kouznetsov

Java UI Testing
Technology and real experience

Links
• NetBeans

http://www.netbeans.org
• Jemmy

http://jemmy.netbeans.org
• Jellytools

http://jellytools.netbeans.org
• Java GUI Testing Yahoo group

